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Probabilistic methods in
spoken-dialogue systems

By Steve J. Young

Department of Engineering, University of Cambridge, Trumpington Street,
Cambridge CB2 1PZ, UK (sjy@eng.cam.ac.uk)

This paper presents a probabilistic framework for modelling spoken-dialogue sys-
tems. On the assumption that the overall system behaviour can be represented as
a Markov decision process, the optimization of dialogue-management strategy using
reinforcement learning is reviewed. Examples of learning behaviour are presented for
both dynamic programming and sampling methods, but the latter are preferred. The
paper concludes by noting the importance of user simulation models for the practi-
cal application of these techniques and the need for developing methods of mapping
system features in order to achieve su¯ ciently compact state spaces.

Keywords: speech; interfaces; dialogue; systems; reinforcement; learning

1. Introduction

Speech technology is maturing rapidly and attention is switching to the problems of
using this technology in real applications, especially applications that allow a human
to use voice to interact directly with a computer-based information or control system.
Apart from the simplest of cases, such systems involve a sequence of interactions
between a person and a machine. Therefore, they involve dialogue and discourse-
management issues in addition to those associated with prompting the user and
interpreting the responses. These systems are often referred to as spoken-dialogue
systems (SDSs).

Existing SDSs are diverse in nature and there are many papers describing them
(see, for example, Young & Proctor 1989; Aust et al. 1995; Sadek et al. 1995; Pier-
accini et al. 1997; Zue 1997). There are also several books providing more extensive
treatment of the issues (see Smith & Hipp 1994; Bernsen et al. 1998; De Mori 1998).

The main components of a typical SDS are illustrated in  gure 1. Overall operation
is orchestrated by a dialogue manager, whose function is to exchange information
with the user and thereby access and update the information in the database. User
interaction consists of a sequence of question{answer cycles in which each question
is designed to elicit some speci c information. The user’s response is processed by
a speech recognizer and its output is converted by an interpreter into a semantic
representation. Based on this new input, the dialogue manager updates its internal
state and plans its next action. This continues until the user’s information need is
satis ed and the interaction is terminated.

In terms of data ®ow, the user’s input is an acoustic waveform y, which is converted
by the recognizer into a sequence of words, w. The parsing and interpreting stage
converts the word sequence into a concept sequence, C , which typically consists
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Figure 1. Architecture of a spoken-dialogue system.

of tagged entities arranged in some predicate{argument structure. The recognition
process makes use of a language model to constrain the search space of possible word
sequences, and the parser makes use of a grammar to de ne the phrase structure of
the input. Output to the user follows the same pattern in reverse: concepts are
converted to words, which are then converted to acoustic waveforms.

The key issues in designing an SDS are how to specify and control the dialogue ®ow;
how to constrain the recognizer to work within a limited domain; how to interpret
the recognition output; and how to generate contextually appropriate responses to
the user. The design criteria that motivate the solutions to these issues are many
and varied, but the key top-level goal is to produce a system that allows a user to
complete their required tasks quickly and accurately.

The lower-level components of an SDS typically make heavy use of probabilistic
approaches both in their design and run-time operation. For example, the speech
recognizer often uses hidden Markov models to represent the basic sounds of the
language and n-gram language models to represent the patterns of expected word
sequences. Both the acoustic models and the language models are estimated from
large training corpora during the construction process. At run-time, Viterbi decoding
is used to  nd the sequence of acoustic models and words that are most likely to
have generated the observed acoustic input (Young 1996).

The use of probabilistic methods in speech recognition has proved to be essential
in obtaining robust operation. By training the models on large corpora that are rep-
resentative of the intended user population, the full range of variability in speakers,
accents, moods, etc., can be accommodated. However, current SDSs are typically
designed at the higher levels using a combination of heuristics and iterative re ne-
ment. The aim of this paper is to review and promote discussion of the areas in which
the probabilistic approaches used inside the recognition and parsing components can
be extended to the higher levels of system design. In particular, the paper addresses
the following issues.

(i) How can dialogue-management strategies be optimized?

(ii) How can robust dialogue-management strategies be learnt automatically?

(iii) How can expected performance be estimated for a given dialogue design?

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Probabilistic methods in spoken-dialogue systems 1391

user SUS

dialogue 
manager

nt

rt + 1
st + 1

yt ct

at st

task
model

Figure 2. Block diagram of a spoken-dialogue system.

The type of SDS considered here is limited to systems in which the user has a clear
goal and the dialogue is managed using a strategy that is  xed in advance. As will
become clear later, a key assumption is that the system memory and dialogue history
can be encoded within a single state variable.

The remainder of the paper is organized as follows. In x 2, a general probabilistic
framework for modelling SDSs is outlined. Section 3 then discusses dialogue man-
agement in terms of Markov decision processes (MDPs). The two basic approaches
to parameter estimation and optimization within the MDP framework are described
in xx 4 and 5. Section 6 describes how a user simulation model can be used to aid
development and evaluation. Finally, in x 7, conclusions are presented and possible
areas of future work are discussed.

2. A probabilistic framework for SDSs

The primary functional units of an SDS are shown in  gure 2, which is an alternative
view of the architecture diagram shown earlier in  gure 1. The system is controlled
by a dialogue manager, which generates a sequence of actions, at, dependent upon
the system state, st. The goal of the dialogue manager is to change the system
from some initial uninformed state to a su¯ ciently informed state that the user’s
information need can be satis ed. The actions are primarily questions to the user,
although they can also result in accesses to a database. Questions to the user result
in acoustic responses, yt, which are corrupted by noise, n t, before being input to the
speech understanding system (SUS). The concepts, ct, output from the SUS cause the
system memory to be updated, leading to a new dialogue state, st + 1. The relationship
between the dialogue state and the concepts output by the SUS is determined by the
speci c task. Also, each step taken by the dialogue manager results in the generation
of a reward, rt + 1.

The rewards generated at each dialogue step represent the system design objectives
and the overall goal of the system design process is to maximize the total reward,

R =
TX

t = 1

rt:

Typically, each user interaction will incur a small negative reward, and successfully
meeting the user’s information need will generate a large positive reward (Levin &
Pieraccini 1997). The complete sequence of user interactions leading from the initial
state to the  nal state is called a dialogue transaction, and the primary goal is to
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satisfy the user’s requirements while minimizing the transaction time. If there are
other dialogue design criteria|such as minimizing the number of corrections, or
minimizing the number of database accesses|then these can be incorporated into
the reward function accordingly.

Within this framework, the joint distribution for the state, action, speech and
concept sequence can be decomposed as

P (st + 1; at; yt; ct j st; n t)

= P (st + 1 j ct; st)| {z }
tas k m od el

P (at j st)| {z }
D M

P (yt j at; st)| {z }
u s er

P (ct j yt; at; st; n t)| {z }
S US

: (2.1)

The dialogue manager (DM) term, P (at j st), represents the dialogue control
strategy, i.e. in each state of the dialogue, what is the best action to take next?
The user term, P (yt j at; st), represents the response of each user to receiving a
speci c query action in a given state. This term will either represent a model of
the typical user or the statistics of a real user population. Finally, the SUS term
P (ct j yt; at; st; n t) represents the speech-recognition and understanding processes.
The conditioning terms indicate that the interpretation of a user input yt can depend
on the query action, the dialogue state, and the ambient noise conditions.

The focus of this paper is on the  rst three terms of equation (2.1), but, before
moving on, the current state of relevant work on the SUS component should be noted.
The  nal term in equation (2.1) can be expanded (ignoring the time-step index) as

P (c j y; a; s; n) max
w

P (c j w; a; s)P (w j y; a; s; n): (2.2)

The second term de nes the conventional speech-recognition problem, which, ignor-
ing the noise term, can be written as

P (w j y; a; s) = P (y j w)P (w j a; s)=P (y j a; s); (2.3)

where P (y j w) is the acoustic likelihood of the observed speech given the word
sequence w, and P (w j a; s) is the prior probability of the word sequence w given
the action and dialogue state. There is a substantial literature on solutions to this
modelling problem (Young (1996) provides a review); however, the interesting aspect
from the point of view of SDSs is the explicit inclusion of the dependence of P (w) on
the action, a, and dialogue state, s. This is the crucial feature that makes complex
interactive SDSs feasible. The language model used at each question{answer step can
be highly context dependent. For example, it can be tightly constrained to a speci c
set of possible input utterances as in Young et al. (1991), or it can be a stochastic
context-dependent n-gram, as in Andry (1992), Niedermaier (1992) or Drenth &
R�uber (1997).

The mapping of words to concepts, as represented by the  rst term in equa-
tion (2.2), is typically done by mapping phrases to semantic tags or predicates.
This mapping can be done manually using explicit grammars, as in Ward (1991)
and Sene¬ et al. (1992), or using n-grams as in Pieraccini et al. (1991), Pieraccini
& Levin (1992) and Miller & Bobrow (1994). These approaches can also be com-
bined as in Meteer & Rohlicek (1993) and Lloyd-Thomas et al. (1995). Most current
approaches identify the salient phrases to extract and map manually. However, if the
task is simple enough and there is a large body of data to learn from, it is possible to
identify the salient phrases automatically (Gorin et al. 1991, 1997; Arai et al. 1999).
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3. Markov decision processes

The remainder of this paper focuses on the key issue of dialogue management. From
the point of view of the dialogue manager, the components within the dashed box
in  gure 2 can be regarded as a single system driven by the input actions at. If each
dialogue action and state change are assumed to depend only on the current state,
then the system can be modelled as a Markov decision process (Levin & Pieraccini
1997; Levin et al. 1998).

The key equations governing the behaviour of an MDP are

(i) transition function, T (s0; a; s) = P (st + 1 = s0 j at = a; st = s);

(ii) policy matrix, (s; a) = P (at = a j st = s); and

(iii) expected reward, R(s0; a; s) = E(rt + 1 j st + 1 = s0; at = a; st = s).

The policy matrix represents the dialogue-management strategy and the reward
represents the objective function. Assuming that a dialogue transaction consists of a
sequence of states s0; s1; : : : ; sT, then the total expected reward for that transaction
is just

R =

TX

t = 1

R(st + 1; at; st);

and the goal is usually to  nd a policy that maximizes this. MDP optimization is
a well-studied topic (see, for example, Kaelbling et al. 1996; Sutton & Barto 1998),
and only the key points will be summarized here.

The expected value of the reward can be computed recursively by introducing a
value function V (s), which is the expected reward from state s to terminal state
sT given policy :

V (s) =
X

a

(s; a)
X

s0

T (s0; a; s)[R(s0; a; s) + V (s0)] (3.1)

=
X

a

(s; a)Q (s; a); (3.2)

where Q(s; a) gives the expected reward if action a is taken from state s.
The optimal dialogue policy, (s), is the deterministic policy that gives the max-

imum value function V (s), such that

V (s) = max V (s); 8s 2 S; (3.3)

where S is the set of all states. The optimal value function can be found by solving

V (s) = max
a

X

s 0

T (s0; a; s)[R(s0; a; s) + V (s0)]: (3.4)

Similarly, the optimal Q function can be found by solving

Q (s; a) =
X

s 0

T (s0; a; s)[R(s0; a; s) + max
a 0

Q (s0; a0)]; (3.5)
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and then the required optimal dialogue policy is given by

(s) = arg max
a

Q (s; a): (3.6)

These are the basic equations that govern MDPs and which can be used as the basis
for dialogue modelling and optimization. Equations (3.4) and (3.5) are nonlinear and
have no closed-form solution. Therefore, iterative methods are used. Furthermore,
any implementation of reinforcement learning for realistic dialogue systems must be
able to handle problems of accurately estimating the state transition function and
dealing with very large state spaces. Taking these issues into account, two distinct
approaches can be identi ed|dynamic programming and sampling|and these are
discussed in more detail below. A further issue is the source of data used to estimate
parameters. Ideally, the data would be gathered from interactions with real users,
but this is rarely practical, at least during the initial design phases. An alternative
approach is to build a model that simulates users. This topic is also discussed below.

The two primary performance metrics for a dialogue-management strategy are
the probability of success, P s u cc, and the expected transaction time, E [d]. Once the
system transition function and dialogue policy have been learnt, these can be eas-
ily computed. If the dialogue policy is deterministic, the state transition function,
T (s; a; s0), can be mapped into an jSj jSj transition matrix, T [s; s0]. Otherwise, the
state matrix must be expanded for each (s; a) pair. Given an initial state vector p0,
the state vector at time t|and, hence, the probability of occupying each terminal
state|is given by

pt = T tp0: (3.7)

As is well known, this can be evaluated e¯ ciently by setting T = V DV 1, where
D is a diagonal matrix of eigenvalues and V is a matrix whose columns are the
corresponding eigenvectors. Then

pt = V DtV 1p0; (3.8)

and P s u cc = pt(n), t ! 1, where n is the state index of the terminal success state.
The expected transaction time can be computed in the obvious way by computing
the expected value of t in moving from state 1 to a terminal state, i.e.

1X

t = 1

X

m 2 T
pt(m)t;

where T is the set of all terminal states.y

4. Dynamic-programming-based policy optimization

The basic idea of dynamic-programming-based (DP-based) reinforcement learning
methods is to scan the state space in order to recursively estimate the value function
for a given policy. Once the value function has been computed, the policy itself can be
updated and the whole process repeated. This procedure is guaranteed to maximize
the value function and converge to the optimal policy.

y To compute Psu cc , the terminal success state must be absorbing, i.e. have a self-loop of probability 1.
To compute expected transaction times, the terminal states must be non-absorbing.
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There are several variants of this approach, but the simplest and most e¬ective
is value iteration, whereby the policy is e¬ectively updated at every step within
the value function estimation. The value update equation follows immediately from
equation (3.4) above. For each s 2 S until convergence:

V (s) max
a

X

s 0

T (s0; a; s)[R(s0; a; s) + V (s0)]: (4.1)

This e¬ectively interleaves the value function estimation and policy updates by
always choosing the policy that is locally maximum. If the best action for each
state is recorded in (s), then, on convergence, (s) will be the optimal policy.

As noted earlier, this approach is limited by the size of the state space and
the di¯ culty of estimating the state transition function. These problems can be
bypassed to some degree by maintaining a reduced state representation and using
global recognition{understanding statistics.

As an example, many dialogue `form- lling’ applications can be reduced to the
problem of  nding a set of values and then retrieving some required information
from a database. The system state in this case can be represented by the state of
each variable, where each variable is either unknown (uk), known with some degree
of con dence, say low (lo), medium (med) or high (hi), con rmed and correct (cc),
or con rmed but false (cf). Thus, for n variables, in this example there would be 6n

dialogue states.
Suppose that a dialogue-management policy is required based on the assumption

that in any state one of the following  ve actions is possible:

ask(x) ask the user for the value of variable x;
con rm(x) ask the user to con rm the value of x;
askconf(x; y) ask for the value of y while implicitly con rming x;
askagain(x) ask again for the value of x; or
accept(x) accept the value of x without con rming it.

Further, assume that the performance of the SUS component can be idealized by
the global statistics: P (l j a) and P (err j l), where l is the con dence level. Thus, for
example, in response to ask(x), the state of variable x would change from uk to med
with probability P (med j ask). A subsequent con rm(x) action would then change
the state of variable x from med to cc with probability

P (corr j med)
X

l

P (corr j l)P (l j con rm);

where P (corr j l) = 1 P (err j l), and the summation represents the probability of
the user being correctly recognized as saying `yes’. Similarly, the state of x would
change from med to lo, representing the case where the user does not con rm the
value of x with probability

P (err j med)
X

l

P (corr j l)P (l j con rm)+P (corr j med)
X

l

P (err j l)P (l j con rm):

In this case, the  rst term corresponds to the case where the user is correctly recog-
nized as saying `no’, and the second term corresponds to the case where the user is
misrecognized as saying `no’ when x was actually correct.
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Figure 3. Dialogue policies learnt for near-perfect and imperfect recognizers.

Using this type of model,  gure 3a shows the optimal dialogue strategy learnt for
a two-variable problem using a near-perfect recognizer. In this case, no con rmation
is attempted. If the recognizer con dence is low, it asks again, otherwise it assumes
that the recognized value is correct. Figure 3b shows the strategy learnt for a rec-
ognizer with characteristics typical of an imperfect but good system. In this case,
both variables are con rmed. However, the  rst variable is con rmed implicitly if
the con dence is high in order to potentially save a question{answer cycle. If the
recognition degrades further, then the implicit askconf(x) action is replaced by an
explicit con rm action.

The reward function used for these examples was 1 for each question{answer
cycle and +100 for a successful conclusion. The  nal values of V (0) for the perfect
and good recognizers were 98 and 82.5, respectively. The probability of success was
99% and 83%, and the expected number of dialogue steps was 2 and 4.94, respectively.

5. Sampling-based policy optimization

Whereas DP methods aim to explore the complete state space, sampling methods
focus on state sequences corresponding to optimal and near-optimal dialogues. They
can therefore be used when a complete model of the user and/or the SUS component
is unavailable.

A simple and e¬ective sampling approach is to use the Monte Carlo (MC) technique
on whole dialogue transactions. In this method, a sequence of dialogue transactions
is generated using a stochastic policy (s; a). For each pair (s; a) appearing in the
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Figure 4. Value function versus number of states visited for
learning using DP and using MC sampling.

transaction, the corresponding estimate of Q(s; a) is updated by the sample average

Q(s; a) [N(s; a) 1]Q(s; a) + R(s; a)

N (s; a)
; (5.1)

where R(s; a) is the actual reward obtained from (s; a), and N (s; a) is the number
of times that (s; a) has been visited. In this way, the Q function asymptotically
approaches its expected value over a continuing sequence of transactions, and the
use of a stochastic policy ensures that the relevant areas of the state space can be
fully explored.

The most common form of stochastic policy is the -soft policy. For each pair (s; a),
let a = arg maxa Q(s; a), then

(s; a) =

(
1 + =jA(s)j; if a = a ;

=jA(s)j; otherwise;
(5.2)

where A(s) is the set of all actions possible from state s. This policy is designed
mostly to follow the locally optimal policy but to choose occasionally, with proba-
bility =jA(s)j, a non-optimal action. As ! 0, then the soft policy hardens to the
optimal policy.

To illustrate the relative performance of the DP and MC algorithms described in
this and the previous section, the value function at the initial state can be plotted as
a function of the number of states visited. Figure 4 plots these for a three-variable
dialogue of the form described earlier. As can be seen, the behaviour of the two algo-
rithms is very di¬erent. In DP, the terminal reward propagates slowly back towards
the initial state, and the value function is approached smoothly from below, while
it is simultaneously optimized by adjusting the policy. In MC, the terminal reward
is propagated back to the initial state after just one transaction; however, it will
be a poor estimate, since only one of the many possible state sequences will have
been visited. DP is relatively slow compared with MC, because it takes account of
all possible state sequences, whereas MC only considers state sequences with a high
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probability. However, DP is guaranteed to  nd the optimal policy, whereas the con-
vergence properties of MC depend on the `hardening’ schedule of the -soft policy.
In practice, for the example here, MC  nds the optimal policy typically two to three
times faster than DP.

For long and complex dialogues, the basic MC technique may be slow to converge
because parameter updates only occur on the completion of each transaction when
the  nal rewards are known. An alternative sampling technique is temporal di® erence
(TD) learning, in which the Q function is updated after each action by comparing the
actual one-step reward with the reward predicted by the Q function. More speci cally,
at (s; a), the action a is applied and the reward r and the new state s0 are observed.
Then the next action, a0, is selected using an -soft policy derived from Q. This is a
one-step lookahead which allows Q to be updated by

Q(s; a) Q(s; a) + [r + Q(s0; a0) Q(s; a)]; (5.3)

where controls the learning rate. After updating Q using equation (5.3), the process
repeats from (s0; a0), and so on until the end of the transaction.

As a  nal comment on sampling versus DP methods, it should be noted that sam-
pling methods do not require full knowledge of the state space, and, furthermore, they
can be adapted to track systems in which the transition function is non-stationary.
Thus, in general, sampling methods are preferred over DP methods.

6. User simulation

As noted earlier, one of the disadvantages of the DP approach to dialogue pol-
icy optimization is that a complete knowledge of the system transition function is
required. Sampling approaches on the other hand can be applied to practical systems
by learning directly from each dialogue transaction as it evolves. By using a policy
that occasionally strays away from the optimal, new and perhaps better policies can
be found.

In practice, it takes many dialogue transactions to derive an optimal policy, and
on-line learning from real users may be impractical. An alternative is to use a model
that simulates typical user behaviour (Eckert et al. 1997). This model can then be
interfaced to the dialogue manager and SUS component to generate as many dialogue
transactions as required.

The simulated user component can be interfaced at the speech level, the word level
or the tag level. The tag level focuses on the key informational items in an utterance
(e.g. ° ight-info-request, leave-place, arrival-time, amount, etc.), and it corresponds
roughly to the user’s intentions. For dialogue modelling, interfacing at the intention
level is the most convenient, since it allows the e¬ects of recognition and under-
standing errors to be modelled while avoiding the intricacies of natural language
generation.

An intention-level simulated user component will typically consist of a probabilis-
tic  nite-state tag generator. A tag sequence is generated by traversing through a
sequence of choice points. These choices re®ect the range of possible user inputs
constrained by some overall goal. The history of choices must be recorded so that
the user behaviour is rational and does not, for example, unnecessarily respecify
information that has already been given. As well as choices concerned with di¬er-
ing intentions and varying levels of mixed initiative, choices also include meta-level
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options such as those associated with the user being confused by where he or she is
in the dialogue and by what is expected at that point. The probabilities governing
typical user choices can be estimated from prototype trials or from Wizard-of-Oz
experiments.

The generated tag sequence is  ltered by an error module that simulates recog-
nition and SUS component errors. It should also model user errors such as saying
something that is not intended. The required probabilities for this type of error
model can be determined from data collected from deployed systems by comparing
reference transcriptions with recognition output aligned at the tag level.

A more detailed description of a probabilistic simulated user component of this
form is given by Sche°er & Young (1999).

7. Conclusions

This paper has described a probabilistic framework for modelling human{computer
dialogues. The framework assumes that spoken-dialogue systems can be modelled
as Markov decision processes and are, therefore, amenable to reinforcement learning
techniques. Given either an explicit state transition function, a user simulation, or an
operational system, a reward value function can be estimated and an optimal dialogue
strategy determined. Once that dialogue strategy is  xed, a variety of operational
characteristics can be estimated.

This dialogue modelling approach has application in a number of areas. For exam-
ple:

(i) estimating the probability of success and expected transaction time;

(ii) optimizing an existing dialogue strategy;

(iii) automatically learning an optimal dialogue strategy;

(iv) optimizing the use of recognition con dence measures; and

(v) on-line adaptation of dialogue strategy when conditions are time varying.

It can, therefore, be usefully applied within dialogue design tools, as part of the analy-
sis of existing dialogue systems, and within the adaptation mechanisms of operational
systems.

These approaches to probabilistic dialogue modelling are still at a very early stage,
and it is not clear how generally applicable they will be in practice. Clearly, a crucial
issue is the apparent dependence on a single global state variable and the Markov
assumption. Reinforcement learning depends crucially on the estimation of a state
value function V (s) that allows the alternative actions available at each state to be
compared. All of the methods reviewed in this paper have assumed that V (s) is a
look-up table and that the states are distinct. In practical systems, the state space
will be very large and possibly unknown. Distinct states arise from the combination
of system characteristics, such as the status of variables and their values, the recog-
nition performance, prior information such as defaults, historical information such
as the number of times a variable has been requested, and so on. Thus, to make
progress it will be necessary to  nd good ways of combining these state features
and mapping them to form a compact and manageable state space. Possible lines
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of attack here include using neural networks to automatically learn an appropriate
mapping, or using Bayesian networks to allow the di¬ering types of user and system
level information to be combined (Pulman 1997).

Other important research areas include  nding the best reinforcement learning
methods to use for dialogue systems and building e¬ective user simulation models.
In the much longer term, the various system components such as the acoustic lan-
guage models, grammars, con dence levels and dialogue manager should be jointly
optimized to maximize the desired system performance. However, this ideal may take
some time to achieve!

The focus of this paper owes much to the work of Esther Levin and Roberto Pieraccini. Karen
Sp�arck Jones, Gerald Gazdar and Konrad Sche² er provided helpful feedback on an early draft.
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Discussion

F. Pereira (AT & T Laboratories, Florham Park, NJ, USA). The model described
has explicit access to the user state in the dialogue manager, which would not be the
case in a practical system. Since many dialogue systems su¬er from di¯ culties due
to a mismatch between the beliefs of the user and the system, how would the model
proposed deal with such a mismatch?

S. J. Young. The divergence of user and system beliefs is a serious problem and
a proper `human’ repair would require sophisticated reasoning. However, dialogue
strategies can be designed to try to prevent the beliefs diverging, for example by
using redundant questions to ask for con rmation about information. Such strategies
can, in theory, be learned within the reinforcement learning framework.

F. Pereira. Real dialogue systems need to be able to model premature hang-up by
the user by incorporating discounted rewards.

S. J. Young. This may be true, but the scale of the problem is not clear. To simplify
the talk, discounting was not mentioned, but it is possible within the framework
described.

S. Isard (University of Edinburgh, UK ). The system is restricted by the small
number of prede ned dialogue acts. Is it possible to learn a new dialogue act within
the framework described?
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S. J. Young. It is possible to increase the number of dialogue acts to include many
redundant strategies and let the system learn which should be used. The case of
adding an unknown dialogue act has not been considered within this framework.

K. R. McKeown (Columbia University, New York, USA). An example was given
where the system had learned to explicitly con rm information from the recognizer
labelled with low con dence, while only implicitly con rming information labelled
with high con dence. What other overall strategies had been learned or might be
learned by such a system?

S. J. Young. A richer set of actions is needed in order to see more interesting
alternative dialogues. It is possible to get the same results within the system by
performing di¬erent sequences of actions, for example, con rming information as
soon as it is seen, or at the end of the dialogue.
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